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Abstract Application of Weibull statistics to tensile

strength prediction in laminated composites with open

holes is revisited. Quasi-isotropic carbon fiber laminates

with two stacking sequences [45/0/–45/90]s and [0/45/90/–

45]s with three different hole sizes of 2.54, 6.35 and

12.7 mm were considered for analysis and experimental

examination. The first laminate showed 20% lower strength

for smaller and 10% for the larger hole sizes. A novel

critical failure volume (CFV) method with minimum

scaling length constraint as well as the traditional Weibull

integral method were applied. The strength prediction was

based on the state of stress in the 0� ply by taking into

account the redistribution of stress due to matrix damage in

the form of splitting, delamination and matrix cracking of

off axis plies. The state of matrix damage precipitating

failure was recorded by using X-radiography and examined

by a sectioning technique. The measured extent of damage

was then included in a 3D stress analysis procedure by

using a mesh independent crack modeling method to

account for fiber direction stress redistribution. The CFV

method gave results within one standard deviation from

experimentally observed strength values for both laminates

and all three hole sizes. The Weibull integral method un-

derpredicted the strength in all cases from as much as 20–

30% for smaller hole sizes to 8% for the large holes. The

accuracy of failure predictions using CFV is attributed to

the introduction of a minimum scaling length. This length

has a physical meaning of the width of a process zone of

formation of fiber macro-crack as a result of single fiber

break interaction. Direct measurement or rigorous evalua-

tion of this parameter is, however, difficult. Consistent with

referenced micromechanical studies, its value was assigned

equal to six times the Rosen’s ineffective length.

Introduction

The strength prediction of composites with stress concen-

trations is concerned with material response in small highly

stressed volumes. Direct evaluation of material strength in

such areas is difficult to achieve in practice. On the other

hand, the ability of such small regions to sustain loads

exceeding the average strength measured on uniformly

loaded coupons, e.g. ASTM standard for axial strength

testing in unidirectional composites [1], is the foundation

of the long standing Whitney–Nuismer point and average

stress failure criteria [2]. These criteria postulate that the

failure of a composite with stress concentrations occurs

when a finite size volume near the stress concentration is

loaded at or above the average strength measured on

standard test coupons without stress concentrators. The size

of this volume constitutes an additional material property.

These two parameter criteria along with a fracture

mechanics based criterion [3] provide the foundation of the

industrial composite bolted joint design tools that are in

service today. Two types of stress concentrations in the

form of through the laminate thickness cracks and holes

were considered in the original studies [2–5]. The charac-

teristic dimensions in the point and average stress failure

criteria were established to be 1.016 mm and 3.81 mm,

respectively. Obtained for glass/epoxy Scotchply, these
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dimensions were also shown to adequately describe the

effect of strength increase with reduction in size of the

crack/hole in T300/5208 graphite epoxy laminates. It was

noticed however, in [4] that for some laminates the accu-

racy of predictions with the cited characteristic dimension

values was unsatisfactory. While proving accurate and

efficient for capturing the notch size effect on strength

within a given laminate family, these dimensions have not

found clear physical interpretation and appear not to rep-

resent a fundamental material property. Indeed, in-depth

studies of composite laminates with through the thickness

cracks and sharp notches by Kortshot and Beaumont [6]

revealed complex failure mechanism. According to [6],

matrix cracking in the form of splitting as well as accom-

panying delamination lead to significant reduction and

dispersion of the stress concentration in the fiber direction

as compared to a crack type stress singularity. The Weibull

scaling based integral approach was then applied to non-

uniform fiber direction stress distribution to predict the

average failure load.

The present paper will attempt such an approach for

composite laminates with open holes. The emphasis will be

on evaluation of the limits of the applicability of the tra-

ditional Weibull integral based fiber direction strength

scaling. We shall experimentally obtain the extent of

matrix damage at loads close to failure in quasi-isotropic

laminates with two stacking sequences: [45/0/–45/90]s and

[0/45/90/–45]s. The matrix cracking and delaminations

observed will then be modeled by using a mesh-indepen-

dent damage modeling technique [7–9]. Weibull scaling of

fiber direction strength will be applied to strength predic-

tion in the 0� ply and compared to experiments. A critical

element of analysis involving statistical distributions of

strength is the quality of the strength data used for analysis.

A review of research devoted to investigation of composite

strength scaling under various loading conditions was

carried out by Wisnom [10]. While the trend of strength

increase with decreasing specimen size was apparent with

regard to fiber direction tensile failure, there was no

methodology for reliable measurement of its Weibull

parameters. Such methodology was recently developed by

Wisnom et al. [11] and experimental data obtained for an

IM7/8552 material. The material system utilized in our

experiments was IM7/5250-4. It was assumed that these

two material systems possess similar fiber direction prop-

erties at room temperature and thus Weibull parameters

from [11] were used in the present study.

Application of Weibull based strength scaling approach

to strength prediction of composites with open holes was

pioneered by Wu [12], Wetherhold and Whitney [13], and

Wetherhold [14]. References [12, 13] addressed the effect

of the hole size on the strength of composite laminates and

showed qualitative agreement with experimental data. The

details of the analyses performed in [12] are not revealed

whereas a simplified one dimensional Weibull integration

along the tensile failure plane perpendicular to loading and

passing through the center of the hole was used in [13]. In

the follow on research, Wetherhold [14] considers reli-

ability of open hole laminates under multiaxial loading by

using a Lekhnitskii solution to define the two dimensional

stress field. A particularly interesting aspect of this work is

that it develops a failure localization methodology, which

is based on evaluation of reliability (1 minus probability of

failure) of nonoverlaping subvolumes by subdividing the

laminate with the hole into regions similar to finite element

subdivision. In this case, however, volume discretization

was performed for Weibull integral calculation only. The

Weibull integral was calculated for each subregion to

evaluate its reliability and then this reliability was divided

by the volume of that region. It was shown that this

approach qualitatively predicts the localization of the

failure region near the stress concentration for material

with low variability and its dispersion for materials with

high strength variability. However, the proposed quantity,

the ‘‘reliability density,‘‘ may not be suitable for quanti-

tative evaluation of the most likely failure region, because

it appears to be dependent on the subdivision. Thus ana-

lyzing the same stress field with two subdivision where one

is a refinement of another, the ‘‘reliability density’’ of

every volume of refined subdivision will be higher then

that calculated for the first subdivision. In the limit of

infinite subdivision refinement the ‘‘reliability density’’

will also infinitely grow.

A method for identifying the critical failure volume

(CFV), i.e. the most likely failure volume, was recently

proposed in [15]. The key difference between the CFV

method and Weibull integral method is that the former

evaluates the probability of loss of load carrying capacity

of a finite volume, and not that of its infinitessimal sub-

domain, and thereby is not derived from the weakest link

concept. The quantitative definition of the CFV in the

problems with stress concentrations is especially important

in heterogeneous materials such as composites. As shown

in [15], the CFV size can be below the limits of applica-

bility of Weibull stress scaling obtained on a macro-spec-

imen scale and require micromechanical, i.e. fiber/matrix

level, considerations. Experimentation is carried out in the

present work to evaluate this effect.

Experimental

Coupons cut from quasi-isotropic IM7/5250–4 laminates

with two different stacking sequences were subjected to

quasi-static tensile loading. The stacking sequences were

[45/0/–45/90]s and [0/45/90/–45]s. Nominal thickness of all
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specimens was 1.11 mm. Three different hole sizes, 2.54,

6.35 and 12.7 mm in diameter, were drilled by using dia-

mond drill bits. Sets of 18 specimens were tensile tested for

each of the two smaller hole sizes for each laminate to

obtain the tensile strength. The specimen width was

25.4 mm and 38.1 mm, respectively. Three [45/0/–45/90]s

specimens were tensile tested with the hole size 12.7 mm

(width 76.2 mm). Due to unforeseen difficulties only one

data point was obtained for the large hole size in the [0/45/

90/–45]s laminate. Such inconsistency in reliability of data

is partially due to the fact that only the two smaller hole

sizes were planned for investigation initially. However, due

to some material surplus the data for larger hole size were

also obtained and included.

The laminate with outside 0� plies showed significantly

higher tensile strength for all hole sizes. Such difference

was attributed to fiber direction stress relaxation due to

matrix cracking in the form of splitting and delamination [9]

affecting this stacking sequence. The extent of matrix

damage in the present study was obtained by using addi-

tional specimens, which were tensile loaded to loads

approximately 83–91% of the tensile failure loads measured

previously. These specimens were then X-rayed and two of

them sectioned. In the case of the 12.7’’ hole diameter

specimen with [0/45/90/–45]s stacking sequence the tensile

strength reported is the strength of the specimen X-rayed.

Initial drilling damage was evaluated by X-raying the

specimens before loading. Some matrix cracking and

delamination was observed in the specimens with 2.54 mm

hole diameter. However, the damage appeared to be

located in the areas away from those exposed to overstress

as shown in the Fig. 1. The loading direction corresponds

to the x-direction. The laminates with the other two hole

sizes revealed no drilling damage visible on X-ray.

An important aspect of the present approach is to

evaluate and model the main features of the state of matrix

damage preceding the fiber failure. Figure 2 displays die

penetrant enhanced X-ray images of matrix cracking and

delamination precipitating the final specimen failure for all

specimens except the 12.7 mm [45/0/–45/90]s which was

unavailable. Table 1 shows the load values at which these

images were taken and in parentheses the percentage of the

final failure load. The tensile strength values are given in

Table 3 and will be discussed subsequently. The damage

observed in all images consists of matrix cracking and

delaminations. Drastically different size of the near hole

region affected by matrix damage can be seen for the two

laminates. In the case of the [45/0/–45/90]s laminate the

size of splits in the 0� ply appears to scale with the hole size

and equals approximately one diameter. In the [0/45/90/–

45]s laminate, the splits in the zero degree ply are longer

than the two smallest hole diameters. In fact, it appears that

these splits grow to approximately the same length

regardless of the hole size. All images contain significant

amount of matrix cracking in +45 and –45 plies. Ref. [8]

considered the influence of matrix cracks in the off-axis

plies on the stress redistribution in the load carrying 0� ply

and showed that such influence is small in comparison to

the effects of splitting in the 0� ply itself. Thus in the

present work, we will only model the splitting of 0� plies,

any delamination on their interfaces and the cracks in the

adjacent plies such as the 45� in the [0/45/90/–45]s laminate

and the 45� and –45� cracks in the [45/0/–45/90]s laminate.

A significant effect on the fiber direction stress is played by

the delamination, which separates the 0� ply from the rest

of the laminate. In the case of [45/0/–45/90]s laminates,

Fig. 2a, c the X-ray does not indicate suspect delamination

areas. In the case of the [0/45/90/–45]s laminate, Fig. 2b, d,

f, a darker shadow is present in the stress concentration

area (h = 90�) for the two larger hole sizes, whereas no

shadow can be seen for the hole size of 2.54 mm. Speci-

mens with hole diameter 2.54 mm and 6.35 mm were

sectioned along the symmetry line perpendicular to loading

direction. Microscopic inspection showed no delaminations

present in the stress concentration area on the 0�/45� ply

interface. The shadow on the X-rays corresponded to a

delamination between the 90� and –45� plies. However, the

dark shadows in the small regions between the splits and

the hole edge were found to correspond to delaminations

on the 0�/45� interface. The cross sections of the 2.54 mm

specimen in vertical planes just off the centerline of the

specimen are shown on Fig. 3. The delamination is clearly

seen inbound (toward the hole edge) extending up until the

split. Figure 4 shows the schematics of the damage pattern

modeled in each laminate. The split and crack length in all

cases is shown in Table 2. The delamination contours were

modeled as ellipses truncated by the splits in the 0� ply. The

lengths of the half axes of these ellipses also are shown in

Table 2. All damage was modeled anti-symmetrically

about the horizontal centerline of the specimen.

Stress analysis and v(q) function calculation

Consider a rectangular orthotropic plate containing a

circular hole having a diameter D, as shown in Fig. 5. The

Fig. 1 X-ray image of drilling damage in laminates with 2.54 mm

holes, (a) [45/0/–45/90]s laminate and (b) [0/45/–45/90]s laminates.

Note: no damage visible in larger hole sizes
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plate consists of N plies of total thickness H in the

z-direction and has a length L in the x-direction and width A

in the y-direction. The following displacement boundary

conditions were applied to the specimen

�uxð0; y; zÞ ¼ uxðL; y; zÞ ¼ e0L=2

uyð0; 0; 0Þ ¼ uzðx; y; 0Þ ¼ 0:
ð1Þ

Traction-free boundary conditions are present on all other

surfaces. The dimensionless loading parameter e0 corre-

sponds to relative elongation of the specimen. The z-

direction displacement component on the bottom surface is

constrained due to the symmetric lay-up of the laminates

considered, which allows one to model only half of the

specimen. The constitutive relations of each ply are as

follows:

rij ¼ Cp
ijklðekl � ap

klDT Þ; i ¼ 1; . . . ;N ;

where Cp
ijkl and ap

kl are elastic moduli and thermal expan-

sion coefficients of the pth orthotropic ply, and DT is the

temperature change. The average applied traction is

calculated as

r0 ¼
Z

y;z

rxxð0; y; zÞ dy dz: ð2Þ

A three-dimensional displacement approximation is built

by using the tensor product of one-dimensional approxi-

mations. Considering an elementary cube [0,1]3 in local x1,

x2, x3 coordinate system the 3-D displacement approxi-

mation can be written as

uðx1x2x3Þ ¼
X

i

X
j

X
k

Xiðx1ÞYjðx2ÞZkðx3ÞUijk; ð3Þ

where u is the displacement vector and Uijk are vectors of

displacement approximation coefficients not necessarily

associated with nodal displacements, and indexes i, j and k

in Eq. (3) change from 1 to the total number of approxi-

mation functions in each direction. Depending upon the

application and geometry, different orders of splines (from

1 to 8) can be used in each direction. Besides changing the

order of splines, one can also change their defect (maxi-

mum number of discontinuous derivatives) at the node,

thus being able to apply standard linear or a higher order

p-type finite element approximation if desired. A curvi-

linear coordinate transformation x = x(x1 x2 x3), where

xT = (x,y,z), with Jacobian matrix J (x1 x2 x3) is used to

map the unit volume into the global x, y, z, coordinate

system. The Gaussian integration procedure is used to

calculate the components of the stiffness matrix.

A critical element of strength prediction in composites

with stress concentrations is the modeling of matrix

cracking and delaminations precipitating the final failure.

An extension of the higher order spline function based

displacement approximation (Eq. (3)) to the modeling of

Fig. 2 X-ray images of matrix

damage state for 2.54 mm hole

(a) [45/0/–45/90]s and (b) [0/

45/–45/90]s, 6.35 mm hole (c)

[45/0/–45/90]s and (d) [0/45/–

45/90]s, and 12.7 mm hole (e)

[45/0/–45/90]s (unavailable) and

(f) [0/45/–45/90]s. Load applied

in the x-direction

Table 1 Load values at which the X-ray images of matrix damage

were taken

Hole diameter X-ray image loads in MPa and % of

failure stress

[45/0/-45/90]s [0/45/90/-45]s

2.54 mm 507.9 (89%) 616.3 (91%)

6.35 mm 414.6 (88%) 507.9 (90%)

12.7 mm N/A 344.7 (83%)
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displacement field discontinuities occurring in arbitrary

directions with respect to the mesh lines was proposed in

[7]. This method was applied to multiple matrix crack

modeling near an open hole in laminated composites in [8]

and [9]. The accuracy of prediction of the redistribution of

stress in the fiber direction was verified by using moire’

interferometry. In the present paper, multiple cracks and

delaminations identified with X-ray images at loads close

to failure will be modeled. This mesh independent crack

modeling method is based on replacing the true step

function, used for element enrichment by Moes et al. [16],

by an approximate step function, which is a superposition

of the same shape functions used in the displacement

approximation (3). Consider a crack or delamination sur-

face Ga. To calculate the coefficient of spline approxima-

tion for the step function we introduce the signed distance

function of the surface Ga, which is a scalar function

defined for an arbitrary point x of the volume. Let �x be

the point of the surface Ga closest to x. Then the signed

distance function is given as

vaðxÞ ¼ sign½nð�xÞðx� �xÞ� x� �xk k:

The surface Ga of a crack or delamination is a bounded

surface and thereby only for some points x the vector x- �x

will be collinear with the normal nð�xÞ. However, it pro-

vides a unique continuous function defined over the entire

volume, which changes sign along any path intersecting the

surface G or its extension. Note that this function is

commonly denoted as fa which we changed to va to avoid

confusion with the probability of failure. The coefficients

of spline approximation of the step function are then

defined as

Fig. 3 Cross sections of the

2.54 mm hole [0/45/–45/90]s

specimen a small distance from

the specimen centerline

Table 2 The length of matrix cracks and the size of delaminations in

the final state precipitating fiber failure

Hole diameter Matrix crack length and delamination ellipse half

axis in (mm)

[45/0/-45/90]s [0/45/90/-45]s

2.54 mm Splits: l = 2.54 Splits: l = 7.62

45 crack l = 2.54 45 crack l = 2.54

–45 crack l = 2.54 Delam: ax = 1.01, ay = 1.99

6.35 mm Splits: l = 5.08 Splits: l = 7.62

45 crack l = 5.08 45 crack l = 2.54

–45 crack l = 5.08 Delam: ax = 2.54, ay = 3.98

12.7 mm Splits : l = 11.6 Splits : l = 11.6

45 crack l = 11.6 45 crack l = 2.54

–45 crack l = 11.6 Delam: ax = 5.08, ay = 7.97

Fig. 4 Schematics of damage modeled for strength prediction in the

(a) [45/0/–45/90]s laminate and (b) [0/45/–45/90]s laminates
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hi ¼

R
V

gðvaðxÞÞXiðxÞdV
R
V

XiðxÞdV
; ð4Þ

where the scalar function of a scalar argument g(r) is the

Heaviside step function

gðrÞ ¼ 1; r > 0

0; r6 0
:

�
ð5Þ

The displacement jump step function is approximated as

~HðxÞ ¼
X

i

hiXiðxÞ; ð6Þ

where the three-dimensional spline approximation func-

tions in Eq. (6) are the same as in Eq. (3), i.e. Xi (x) ” Xi

(x1)Yj (x2)Zk (x3) for brevity and the single index in the left

side runs through all combinations of the three indices in

the right side. In the case of a single crack the displacement

approximation can be written as

u ¼ ~Huð1Þ þ ð1� ~HÞuð2Þ þ uð3Þ; ð7Þ

where all three displacement approximation functions are

approximated according to Eq. (3). The approximation of

each displacement functions u(m) does not, however con-

tain all shape functions Xi(x). The u(3) contains only ‘‘far

field approximation functions’’ that do not intercept the

crack surface at all. The functions u(1) and u(2) contain

the same shape functions, which are the ones intersecting

the crack surface. Thus only these shape functions are

duplicated and are adding additional degrees of freedom.

The linear independence of duplicated shape functions is

assured since ~H and 1� ~H are linearly independent. One

could write approximation (7) in the form similar to

Eq. (3), where most of the shape functions are the same as

in the approximation for the continuous displacement field

and a certain number of shape functions, the ones which

intersect the crack surface, are duplicated and equal to
~HXi(x) and ð1� ~HÞXi(x) respectively. These shape

functions, however, may require treatment totally different

from that of original shape function Xi(x). Indeed, suppose

that ~H is a true step function jumping on the crack surface,

then ~HXi(x) and (1� ~HÞXi(x) require new integration do-

mains aligned with the crack surface, which in essence is

local remeshing. On the other hand, in the case of the

approximate step function (6) the modified shape functions

are continuous and have the same support (local area in

which they are not equal to zero) as the original function

Xi(x) so that no modification of integration procedures is

required at all.

Modeling of multiple cracking configurations is based

on consistent application of Eq. (7) to accommodate sev-

eral surfaces of displacement discontinuity. Depending

upon their mutual location one will end up with shape

functions such as ~H1
~H2���Xi(x), etc. One can easily imagine

a configuration in which such a product yields an

ill-defined shape function, e.g. multiple cracks crossing in

one point. For the problem at hand, however, the main

types of interacting cracks are single matrix cracks in a ply

and the delamination on the interface, where the resulting

shape functions of the product type are well defined.

As mentioned above, two types of displacement dis-

continuities will be modeled in the parametric studies: ply

matrix cracks and delaminations. The surface Gc of the ply

matrix crack is defined by using four parameters: x0, y0, a
and l, which are the in-plane coordinates of the crack

origin, its angle (equal to the ply angle) and length. The

crack surface is vertical and spans through the thickness of

Fig. 5 Laminated composite with open hole

Table 3 Experimental and

predicted values of average

failure stress

Hole diameter Average experimental and predicted failure loads (MPa)

[45/0/-45/90]s [0/45/90/-45]s

2.54 mm Weibull int. 458.3 (–18.9%) Weibull int. 465.4 (–31.2%)

CFV 589.5 (+4.2%) CFV 679.8 (0.41%)

Experimental 565.4 (c.v. 5.1%) Experimental 677.1 (c.v. 7.8%)

6.35 mm Weibull int. 422.2 (–9.9%) Weibull int. 407.5 (–27.3%)

CFV 474.5 (+1.2%) CFV 561.9 (0.22%)

Experimental 468.5 (c.v. 3.9%) Experimental 560.7 (c.v. 5.6%)

12.7 mm Weibull int. 400.6 (–8.11%) Weibull int. 436.0 (–9.0%)

CFV 432.1 (–0.8%) CFV 476.4 (–0.5%)

Experimental 436.0 (c.v. 9.4%) Experimental 479.2 (N/A)
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the ply. The data given in Table 2 define the crack length

and angle. The coordinates of the crack origin are calcu-

lated simply as

x0 ¼ xc � l=2; y0 ¼ yc � D=2

in the case of 0� splits. For +45 and –45 ply matrix cracks,

they are assumed to originate tangential to the hole, so that

x0 ¼ xc �
D cosðp=4Þ

2
; y0 ¼ yc �

D sinðp=4Þ
2

respectively.

The delamination is defined by two user specified

functions Y1(x) and Y2(x) and z0 (the coordinate of the

delaminated plane) so that the delaminated area is bounded

by functions Y1 and Y2. The delaminations specified in

Table 2 are located on the lower interface of the 0� ply so

that z0=3h, where h is the thickness of the ply. Functions

Y1(x) and Y2(x) are defined point wise by pairs of values (x,

y1) and (x, y2) and Y1(x) and Y2(x) are generated using cubic

spline interpolation. The pairs of (x,y) values are calculated

parametrically according to equations

x ¼ xc þ ax cosð#Þ;
y ¼ yc �minðay sinð#Þ;D=2Þ
06#6 p;

for 34 uniformly distributed values of J and plus and minus

signs correspond to y1 and y2 respectively.

Determination of the CFV

In this section we shall discuss the physical meaning of the

critical or most likely local failure region in the presence of

a stress concentration. We shall consider a Weibull media

such that a uniformly loaded sample of given volume has

the following probability of failure under stress r.

f ðr; V Þ ¼ 1� exp � V
V0

BðrÞ
� �

: ð8Þ

In the case of a nonuniform stress field Eq. (1) can be

generalized in integral form

F ¼ 1� exp � 1

V0

Z

V

BðrðxÞÞdv

0
@

1
A ð9Þ

by applying Eq. (8) to subvolumes of nonoverlapping

subdivision and sending their size to zero. In this case the

logarithm of total reliability expressed as a sum of loga-

rithms of reliabilities of individual subdomains becomes an

integral sum and yields Eq. (9). The implicit assumption

made by transitioning from Eq. (8) to Eq. (9) is that

the volume scaling given by Weibull distribution is valid in

the limit of zero volume. In this context, Eq. (9) expresses

the weakest link concept for nonuniformly stressed mate-

rial and thus provides the probability of failure initiation,

i.e. failure of an infinitesimal volume.

We would like to offer a different method of evaluating

the probability of failure in a nonuniformly loaded material

and set out to estimate the probability of a loss of load

carrying capacity (complete failure) of a given subvolume.

An algorithm will be proposed to find such a volume,

which does not involve a concept of subdivision into mesh

cells but instead deals with parametric representation of the

nonuniform stress fields. The probability of failure or loss

of load carrying capacity was defined so far only for

uniformly loaded specimens as their apparent strength,

described by distribution function (8). The assumption,

which we will use to evaluate the probability of failure in

the nonuniformly loaded regions, states that (8) provides a

lower bound of probability of failure of a specimen with

nonuniform stress distribution, if the stress in each point is

higher or equal to r. Thus the probability of failure P of a

nonuniformly stressed specimen with stress distribution

r(x) can be estimated as

P � f ðru; V Þ; ð10Þ

if

ru ¼ min
x2V
ðrðxÞÞ: ð11Þ

The estimate given by Eq. (10) is not very useful when

applied to the entire volume of the specimen. On the other

hand, one can select a finite region in the nonuniformly

loaded specimen, which has a volume Vi and minimum

stress of ri, and calculate the probability of failure for this

subvolume f(ri, Vi). Suppose that we have found a subre-

gion with volume Vc and minimum stress rc, for which this

probability is the highest, i.e.

f ðrc; VcÞ ¼ max
i

f ðri; ViÞ; ð12Þ

where index i scans all subregions of the specimen. Then

the subregion Vc will have the highest probability of local

failure, and we will call it CFV.

We shall now describe an algorithm for identification of

the CFV and calculation of its failure probability fCFV.

Denote the magnitude of the maximum stress as rm.

Introduce a set of iso-stress surfaces qirm, q0 ¼ 1 >

q1 > q2 > q3 . . . > 0. Consider a continuous function v(q),

0£ q£ 1:
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vðqÞ ¼ volðVqÞ; x 2 Vq , rðxÞ � qrm
� �

: ð13Þ

This function is equal to the volume of the specimen with

stress higher or equal to qrm. The procedure for calculating

the overstressed volume function v(q) is outlined in

Appendix 1. The lower bound of the probability of failure

for these volumes can be estimated as f(qrm, v(q)) by using

Eq. (8). The latter is a continuous function and its local

maximum (if it exists) corresponds to the probability of

failure of CFV

fCFV ¼ max
q

f ðqrm; vðqÞÞ: ð14Þ

Denote by qc the value of q for which fCFV ¼
f ðqcrm; vðqcÞÞ then the respective stress contour qcrm

bounds the CFV and its volume will be equal to

Vc ¼ vðqcÞ: ð15Þ

The existence of a meaningful value 0 < qc < 1 depends

upon both the stress field characteristics as well as that of

the material. In the present paper, we will limit ourselves to

finite values of rm. For an arbitrary stress distribution,

which defines the volume function v(q), this function can

have complex shape. For a typical open hole problem

and shape function B(r) in the form of a two parameter

distribution

BðrÞ ¼ r
b

� �a

; ð16Þ

where a—is the Weibull modulus or shape parameter and b
is an additional constant, one obtains f=0 for q=0 and q=1.

This means that the function f ðqrm; vðqÞÞ will have at least

one local maximum (f‡ 0) for 0 < q < 1. The fact that f=0 for

q=1 follows from the premise that the maximum stress is

attained at a point associated with zero volume, i.e. v(1)=0.

Physics based limits of CFV

At the root of the CFV method is identification of the most

likely failure region by finding the value qc and tracing the

region bounded by stress value of qcrm and/or evaluating

its volume Vc. As shown in [15], this capability becomes

essential in predicting the fiber failure in composite lami-

nates with stress concentrations. In particular, it was shown

that the linear size of CFV defined as

lc ¼
ffiffiffiffiffiffiffiffiffi
Vc=h

p
;

where h is the thickness of the ply, estimated for quasi-

isotropic T300/934 laminates with small 2.54 mm diameter

holes, was significantly below the value of the ineffective

length d introduced by Rosen [17]. It is clear that the

strength scaling parameters in Eq. (16), which are obtained

by testing laboratory size specimens, e.g. [1], are not valid

when lc~d. Thus the probability of failure fCFV becomes

meaningless if Vc or lc is too small. Suppose that one has an

estimate of the minimum size volume Vmin for which the

Weibull scaling in the form (8) and (16) is valid. In the case

of fiber failure, such limits were investigated in [18] by

performing Monte-Carlo simulation of failure of square

cross sections of fiber bundles of three different length 3d,

6d and 9d. A value of lmin = 6d was considered the mini-

mum scalable length in their study for fibers with Weibull

modulus in the range of 10. Although this is higher then the

values of 5–6 for typical carbon fibers it can be used to

estimate Vmin as

Vmin ¼ l2
minh: ð17Þ

Having a value of Vmin one can apriori evaluate the validity

of a fCFV prediction comparing Vc and Vmin. However,

more importantly if Vc and the value of fCFV is physically

inadmissible, one can simply obtain another physically

admissible estimate of the probability of failure by finding

the maximum local probability of failure of only those

subvolumes which are larger or equal to Vmin. In other

words we will replace the definition of CFV given by

Eq. (14) by slightly modified one

fCFV ¼ max
vðqÞ�

q
Vmin

f ðqrm; vðqÞÞ: ð18Þ

The practical calculation of a new value of q, say q0, such

that fCFV ¼ f ðq0rm; vðq0ÞÞ satisfies Eq. (18) is also straight

forward at least in the case when Vmin and Vc are both

much smaller then the specimen volume. In this case q0 is

simply calculated by solving the equation vðq0Þ ¼ Vmin.

Indeed if qc provides an absolute maximum for the function

f ðqrm; vðqÞÞ then the conditional maximum, such that

vðqÞ � V min will take place at q = q0 as long as the func-

tion f ðqrm; vðqÞÞis monotonic on the interval q0 � q � qc.

It might appear that the correction for the minimum

scalable volume is an issue pertaining to the CFV method.

On the contrary, this is a problem related to material het-

erogeneity and stress concentration in any volumes in

which size becomes comparable to the scale of the

microstructure. It will be shown below that the Weibull

integral calculated in problems when the application of the

CFV method yields Vc < Vmin gives unacceptably conser-

vative strength values due to the fact that most of the

contribution to the Weibull integral comes from the very

region Vc. However, due to its integral nature there are no

simple modifications to solve this problem. The solution

proposed by Bazant in the 90’s and known as nonlocal
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Weibull theory [19] proposes to first calculate stress

averages over certain physically dictated characteristic

volumes such as Vmin and then use these averages in

the secondary integration of the Weibull integral. Such

approach clearly addresses the problem at hand, but requires

considerably more effort for practical implementation.

Results and discussion

In this section we will discuss the results of strength pre-

diction of the two quasi-isotropic laminates considered in

the experimental section by using the CFV method defined

by Eq. (18) and the standard Weibull integral method (9).

The value of Vmin in the CFV method is calculated by using

Eq. (17) and thus depends upon the ply thickness. There-

fore the minimum scalable volume as such is not a material

parameter at all and will be used for intermediate purposes

of calculating q0. The minimum length lmin has, however, a

very clear physical meaning: it is the width of the process

zone of formation of a crack in the direction perpendicular

to fiber orientation. In [15] this value was taken to be equal

to lmin=6d, where the ineffective length d is computed

according to Rosen [17]:

d ¼ 1:14df

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1ffiffiffiffi
mf
p � 1

s ffiffiffiffiffiffiffi
Ef

Gm

r
; ð19Þ

where df and Ef are the diameter and the Young’s modulus

of the fiber, Gm is the matrix shear modulus and vf is the

fiber volume fraction. The multiplier 6, which is the single

parameter postulated in the present analysis, has some

justification based on recent results of Landis et al. [18]

and is in the range of data generated by half a century of

research following the cited paper by Rosen. The IM7 fiber

and 5250-4 matrix properties given by Pagano et al. [20]

were used to obtain a value of lmin = 0.266 mm at

vf = 60%, which will be used for strength prediction below.

Note that the value used in [15] for the T300/934 material

system was lmin = 0.323 mm mostly due to a different fiber

diameter and showed a good agreement with archival open

hole strength data for that system. The ply stiffness

parameters for IM7/5250-4 were as follows:

E11=166.6 Gpa, E22 = E33 = 9.44 Gpa, v13 = v13 = 0.33,

v23 = 0.58, G12 = G13 = 6.06 Gpa and G23 = 2.96 Gpa. The

Weibull parameters for the strength in the fiber direction are

those from [11] and equal to Xt = 2.41 Gpa,

V0 = 38,400 mm3 and a = 40.

The average strength values predicted for the two lam-

inates with three hole sizes both by using the CFV and the

Weibull integral methods are shown in Table 3, which also

contains the experimental results. The average value of

strength in all cases was calculated based on probability of

failure as described in Appendix 2. The values in paren-

thesis next to the average values refer to different things for

theoretical and experimental data. For the experimental

data they show the coefficient of variation (standard devi-

ation divided by the average value) in percent. In the case

of predicted values they denote the deviation from the

average strength obtained experimentally, i.e. (prediction-

test data)/test data*100%. All predictions were made by

applying the statistical criteria to stress fields resulting

from modeling the damage given in Table 2.

In the case of the large 12.7 mm hole in the [45/0/–45/

90]s laminate, the value of strength predicted by CFV

method and Weibull integral are within one standard

deviation from the experimental average value. Indeed,

the deviation shown in parentheses is less than the coef-

ficient of variation of the experimental data. Decreasing

the hole size, however, leads to divergence between the

predictions by the two methods. The CFV predictions stay

within one standard deviation from test data in all cases

while the Weibull integral method underpredicts the

strength by as much as 16–19% for the smaller hole sizes.

This result can be explained by calculating the lc
predicted by the CFV method, which in the case of the

6.35 and 2.54 mm are 0.0528 mm and 0.0252 mm,

respectively. These values are significantly smaller than

lmin=0.266 mm and even d=0.044 mm, which indicates

that contribution to Weibull integral coming from such

small volume is inaccurate.

In the case of the stronger laminate [0/45/90/–45]s the

same trend, amplified by the effect of damage, is present as

well, although the Weibull integral method is even more

significantly underpredicting the experimental values.

Table 4 displays the results of ultimate strength prediction

for the two laminates with 6.35 mm hole based on stress

fields predicted for different extents of damage. The col-

umns left to right show the predicted strength based on 0�

ply stress distribution calculated without any matrix dam-

age present, with splitting in the 0� ply only, with splitting

and delamination (not present for the weak laminate) and

with the final damage state as given in Table 2. The

numbers in parenthesis are the deviations from the exper-

imental values of 468.5 Mpa and 560.7 Mpa, respectively.

In the case of the weaker laminate the Weibull integral

based prediction jumps from –22% to –10% below the

experimental data due to stress relaxation as a result of

splitting. Further introduction of the 45� cracks practically

does not change the prediction. The CFV method predicts

different values of strength based on exactly the same

stress distributions. It in fact predicts a much smaller effect

of stress redistribution on the ultimate strength. Even the

strength predicted without taking into account any damage

is within one standard deviation from the experimental

value. The introduction of damage increases the predicted
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strength, however the total range of deviation from test

data is –3% to 1.2%.

In the case of the laminate with the outer 0� plies the

effect of damage on the predicted strength is much more

pronounced. Sequential addition of splitting and delami-

nation brings the prediction by both methods closer to

experimental data. However, the addition of the 45� crack

causes an unexpected reduction of the ultimate strength

prediction by using the Weibull integral method, where as

the CFV result changes only slightly and in the opposite

direction. Such behavior of the Weibull integral based

prediction at first seems to contradict the observation for

the first laminate. This effect can be explained by exam-

ining the stress distributions in the 0� ply of the [0/45/90/–

45]s laminate, which are predicted in the presence of only

splitting and delamination, Fig. 6a, and in the presence of

all damage, Fig. 6b. It appears that a small area of high

fiber direction stress is developing near the intersection of

the splits and 45� cracks, whereas the stress concentration

near the hole edge is approximately the same in the two

cases. The experimental evidence of such stress concen-

tration was reported in [9]. The drop of predicted strength

values by Weibull integral can be explained by its sensi-

tivity to overstress even in a very small volume due to the

very high value of the Weibull modulus a=40. The CFV

method is much less sensitive to point values of high stress

because of the minimum length parameter lmin. A similar

phenomenon is happening in the first laminate. The final

strength predicted for the [0/45/90/–45]s laminate by using

Weibull integral was 422.5 Mpa which is very close to that

predicted by the same method for the second laminate

407.4 Mpa. These predictions are defined by the stress

concentration developing due to the interaction of the 45�

ply cracks with splits in the 0� ply.

Conclusions

An experimental study of tensile strength of two carbon

fiber quasi-isotropic laminates with stacking sequences [45/

0/–45/90]s and [0/45/90/–45]s was performed for three hole

sizes. The first laminate showed 20% lower strength for

smaller and 10% lower for the larger hole sizes. X-radi-

ography and sectioning studies were performed to evaluate

the state of matrix damage precipitating fiber failure. No

delaminations were observed for the first laminate and only

small delamination, not in the high stress concentration

area, were observed in the [0/45/90/–45]s laminate. The

length of the splitting of the 0� ply and cracking in the 45�

plies neighboring with the 0� ply were tabulated along with

the extent of delamination.

A mesh-independent crack modeling method based on

approximation of the Heaviside step function by using

higher order shape functions was used to model the effect

of multiple damage on stress distribution in both laminates

under consideration. Fully three-dimensional analyses were

employed with quadratic approximation of displacement

through the thickness of each ply.

CFV method with a minimum scaling length (volume)

constraint was employed for failure prediction in the two

laminates along with the traditional Weibull integral

method. The strength prediction was based on the state of

Fig. 6 Axial stress distribution in the 0� ply near the hole edge in the

presence of damage, (a) splitting and delamination and (b) splitting,

delamination and one 45� crack

Table 4 Average strength

values predicted for different

extent of matrix damage in

specimens with 6.35 mm hole

diameter

Laminate Average predicted strength (Mpa) and deviation from test %

No damage Splits Splits and delam All damage

[45/0/-45/90]s Weibull int. 362.3 (–22) 419.9 (–10) 422.5 (–10)

CFV 454.3 (–3.0) 470.9 (–0.5) 474.5 (1.2)

[0/45/90/-45]s Weibull int. 346.4 (–38) 411.4 (–26) 499.8 (–11) 407.8 (–27)

CFV 452.0 (–19) 499.2 (–11) 546.0 (–2.6) 562.9 (0.2)
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stress in the 0� ply resulting from stress redistribution due

to matrix damage in the form of splitting, delamination and

matrix cracking of the neighboring plies. The CFV method

gave results within one standard deviation from experi-

mentally observed strength values for both laminates and

all three hole sizes. The Weibull integral methods under-

predicted the strength in all cases from as much as 20–30%

for smaller hole sizes to 8% for the large holes. Such

large disagreement was explained by the high sensitivity of

the Weibull integral predictions to high stress concentra-

tions over even very small areas because of the high value

of the Weibull modulus a = 40, which was used in the

analysis.

The accuracy of the failure prediction by using CFV is

attributed to the introduction of the minimum scaling length

(volume) parameter, which limits the size of the volume to

which Weibull scaling is applied. Such a limit has clear

physical explanation in the case of fiber failure, which is a

process involving accumulation and interaction of single

fiber breaks developing over a band of several ineffective

lengths wide. The width of this band is the minimum scalable

length, lmin. A direct measurement or rigorous evaluation of

this parameter is, however, difficult. Consistent with sited

micromechanical studies, its value was assigned equal to six

times the Rosen’s ineffective length.
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Appendix 1

Computation of the v(q) function

After the solution is completed and all vectors Uijk are

determined, a post-processing step is performed in which

each integration point of the structure is examined twice.

First the stress and strain components are computed, and

the maximum value rm of the component of interest is

found by searching through all integration points. A large

number M (in our analysis M = 101 and 201) is then pre-

scribed, and a sequence

qi ¼ 1� i=M ; i ¼ 0; . . . ;M ;

defined. The overstressed volume function v(q) is then

calculated in M points as

vðqiÞ¼
X

g1

X
g2

X
g3

wg1
wg2

wg3
detJðxg1

1 ;x
g2

2 ;x
g3

3 Þgðr�qirmÞ

ð20Þ

In Eq. (20) indexes gi, i=1,2,3 denote Gauss integration

points in x1, x2 and x3 directions, respectively, and wgi are

respective Gaussian weights. Heaviside step function (5)

cuts off the contribution from all integration points where the

stress is lower than the threshold qirm. For low values of the

threshold value, v(q) will include almost all integration

points in (20) and become close to the entire volume.

Appendix 2

Average strength value calculation

For Weibull distribution (8) with shape function (16), the

average value of strength ra and the coefficient of variation

x (standard variation divided by average value) are given

by well known equations:

ra ¼ b
V0

V

� �1=a

C 1þ 1

a

� �
; ð21aÞ

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cð1þ 2=aÞ
C2ð1þ 1=aÞ

� 1

s
; ð21bÞ

where G-denotes the gamma function. By using Eq. (21a),

one can find the average strength value for a known a if the

probability of failure is known for just for one value of r,

i.e. f is equal to f1 for r = r1. In this case

ra ¼ r1 � lnð1� f1Þð Þ�1=aC 1þ 1

a

� �
ð22Þ

Equation (22) will be used to calculate the average strength

for both the Weibull integral and CFV method based

estimates of the probability of failure.
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